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1. Introduction

Until recently finding an action for the maximally supersymmetric three-dimensional con-

formal (gauge) field theory had remained elusive [1 – 4] (e.g. see [5] for a short review).

The D = 3, N = 8 superconformal field theory (SCFT) is expected to arise from the

“low energy” effective action describing many M2-branes on eleven dimensional Minkowski

spacetime. Hence its formulation is closely linked with finding the theory describing N

eleven-dimensional membranes. Furthermore, via the AdS/CFT correspondence [6], this

SCFT is dual to M-theory on AdS4 × S7, the background which is obtained from the ge-

ometry corresponding to coincident parallel M2-branes in the near-horizon (decoupling)

limit [6].

The D = 3, N = 8 SCFT action is invariant under the three-dimensional superconfor-

mal group Osp(8|4), with bosonic generators belonging to so(8)×usp(4) ≃ so(8)×so(3, 2).

Moreover, the action for a single M2-brane enjoys invariance under the area preserving dif-

feomorphisms (APD’s) on the 2+1 dimensional world-volume as its local (gauge) symmetry
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e.g. [7 – 9]. Thus the multi membrane action is expected to have a gauge symmetry which

somehow manifests this local gauge invariance. The mathematical (algebraic) structure

which encodes three-dimensional APD’s is the Nambu three-bracket [9 – 11]. Therefore,

finding an action for the D = 3, N = 8 SCFT is ultimately related to quantization of

Nambu three-brackets.

It has been argued that although classical Nambu p-brackets (p ≥ 3) enjoy associativity

(e.g. see appendix B of [12]) the “quantized” Nambu p-brackets cannot be associative [8].

For the case of three-brackets, as was proposed originally by Nambu [10], one may use

the associator of a non-associative algebra as the quantum version of the three-bracket.

In fact this idea was put at work by Bagger and Lambert to construct the action for the

D = 3, N = 8 SCFT, the BL theory [1, 2], where this non-associative algebra with its

three element structure (the associator) was called the three-algebra. A three-algebra no-go

theorem was argued for in [14] and then proved in [15]. This no-go theorem states that

the only three-algebra which has a positive definite norm is either so(4) or direct sums of

a number of so(4)’s. In order to describe N M2-brane theory (for a generic N), similarly

to N Dp-brane cases, one would like to be able to write the BL theory with more general

algebras whose rank (or dimension) are related to the number of M2-branes and hence

bypass this no-go theorem. This theorem can, however, be circumvented by considering

algebras of non-positive norm [16 – 18].

In this paper we use another prescription for quantizing the Nambu three-bracket.

This prescription was used in [12] to quantize type IIB D3-branes to obtain a matrix theory

description for the DLCQ of IIB string theory on the AdS5 ×S5 or the plane-wave. In this

approach we replace the classical Nambu three-brackets with the “quantum” Nambu four-

brackets which involve usual matrices. Although the structure of the quantized Nambu

four-bracket we obtain is non-associative [12] the underlying algebra, which is nothing but

the usual matrix multiplication algebra, is associative. In particular we use 2N × 2N

matrices to describe the D = 3, N = 8 SCFT corresponding to the low energy limit of N

M2-branes.

Our prescription requires an extension or relaxation of the notion of three algebras

giving rise to multi M2-brane theories, which will be called relaxed three-algebras. Re-

cently modifications on the mathematical conditions defining a three-algebra have been

considered. These “generalized” three-algebras are obtained by relaxing the antisymmetry

of the three-bracket and metricity of the algebra [13]. Here, instead of focusing on the

antisymmetry or metricity of these algebras, we will relax the closure and the fundamental

identity conditions in a way to be described below. In our representation for the relaxed

three-algebras we show that only the two Euclidean and Lorentzian cases are possible,

compatible with results of [15] and [19]. Moreover, we show that for the Lorentzian case

the su(N) algebras in N × N representation are relevant to the theory of N M2-branes.

More importantly we show that there is nothing inherently “Lorentzian” in the underlying

su(2N) algebra over which the four-bracket structure is defined.

This paper is organized as follows. In section 2, we give a brief review of the BL theory

and its supersymmetry and gauge transformations. In section 3, we present the notion of

relaxed three-algebras. In section 4, we derive matrix representations for the relaxed three-
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algebras. This is done through the “four-brackets” which replace the three-brackets of the

BL three-algebras. We check these representations satisfy the necessary (relaxed) closure

and fundamental identity conditions. In section 5, we discuss the implications of our

relaxed three-algebra realizations for the multi M2-brane BL theory. We argue that our

prescription, supplemented by arguments of [20, 21], resolves the problem of ghost-type

degrees of freedom appearing in the ordinary treatment of the Lorentzian case (see [22]

for other ways to resolve the ghost problem). We check that this theory has the necessary

properties expected from a D = 3, N = 8 SCFT and multi M2-brane action by examining

its behaviour under worldvolume parity and spectrum of its 1/2 BPS states. The last

section is devoted to concluding remarks and open questions.

2. Review of the BLG theory

In this section to fix the conventions and notations we briefly review the BLG theory by

first defining the three-algebras A3 and their algebraic structure and then presenting the

BLG proposed action for the D = 3, N = 8 superconformal field theory.

2.1 The BLG three-algebras

The three-algebra A3 is an algebraic structure defined through the three-bracket
[[

, ,
]]

[[

Φ1,Φ2,Φ3

]]

∈ A3, for any Φi ∈ A3, (2.1)

where
[[

Φ1,Φ2,Φ3

]]

= −
[[

Φ2,Φ1,Φ3

]]

= −
[[

Φ1,Φ3,Φ2

]]

(2.2)

The three-bracket, which is a “quantized” Nambu three-bracket [10] is indeed an associator

and A3 is a non-associative algebra. The three-bracket should satisfy an analog of the

Jacobi identity, the fundamental identity [11]:

Kijklm =
[[[[

Φi,Φj ,Φk

]]

,Φl,Φm

]]

+
[[[[

Φi,Φj ,Φl

]]

,Φm,Φk

]]

+
[[[[

Φi,Φj,Φm

]]

,Φk,Φl

]]

=
[[

Φi,Φj,
[[

Φk,Φl,Φm

]]]]

.
(2.3)

As we can see Kijklm is anti-symmetric under exchange of the first two as well as the last

three indices. We equip this algebra with a product • and a Trace

Tr(Φ1 • Φ2) = Tr(Φ2 • Φ1) ∈ C (2.4)

satisfying a “by-part integration” property

Tr(Φ1 •
[[

Φ2,Φ3,Φ4

]]

) = −Tr(
[[

Φ1,Φ2,Φ3

]]

• Φ4). (2.5)

For the usage in physical theories, noting that Φi’s are complex valued, it is needed to

define the Hermitian conjugation over the algebra. In particular if we choose to work with

Hermitian algebras, i.e.

Φ† = Φ, ∀Φ ∈ A3,
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then the closure condition (2.1) is satisfied with the following definition for complex con-

jugation of the three-bracket:

[[

Φ1,Φ2,Φ3

]]†
=

[[

Φ†
1,Φ

†
2,Φ

†
3

]]

. (2.6)

If we expand A3 elements in terms of the complete basis T a

Φ = ΦaT
a

then (2.1) implies that
[[

T a, T b, T c
]]

= fabc
dT

d (2.7)

and

Tr(T a • T b) ≡ hab (2.8)

defines the metric hab on A3. Mathematically, the metric hab can have arbitrary signature,

though physically, non-positively defined signatures could give rise to ghost degrees of

freedom. We will always take hab to be non-degenerate and invertible. Noting the (2.5),

fabcd ≡ fabc
eh

ed,

is totally anti-symmetric four-index structure constant. The fundamental identity in terms

of the structure constant f is written as

fabc
lf

del
m + fabd

lf
ecl

m + fabe
lf

cdl
m = f cde

lf
abl

m. (2.9)

This equation does not have any solution other than fabcd = ǫabcd or four tensors made out

of ǫabcd, if hab is positive definite and hence A3 is either so(4) or combinations involving

the direct sums of so(4) [15].

To find three-algebras other than so(4) one is hence forced to relax the positive definite

condition on hab [16, 17]. Explicitly if we choose a = (+,−, α) and

hαβ = δαβ , h+α = h−α = 0, h++ = h−− = 0, h+− = h−+ = −1 (2.10)

then fabc
d with non-zero components

fαβγ
− ≡ fαβγ , fαβ+

γ = fα+β
γ = −fα+β

γ = fαβρδργ (2.11)

is a solution to the fundamental identity (2.9), provided that fαβγ are satisfying the usual

Jacobi identity for associative algebras [17].

Finally we point out that if T a’s are all Hermitian then with (2.6) the structure constant

fabcd should be real valued, that is f∗
abcd = fabcd.

2.2 The BLG action

The on-shell matter content of the D = 3, N = 8 hypermultiplet involves eight three-

dimensional scalars XI , I = 1, 2, · · · , 8 in the 8v of the SO(8) R-symmetry group, eight

two component three-dimensional fermions Ψ in the 8s of SO(8) (we have suppressed both

the 3d and the R-symmetry fermionic indices). Each of the above physical fields which
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will generically be denoted by Φ are also assumed to be elements of the three-algebra and

hence

Φ = ΦaT
a.

The action of the BLG [1 – 3] theory is given by

S =

∫

d3σ Tr

(

−
1

2
DiX

IDiXI −
1

2.3!

[[

XI ,XJ ,XK
]][[

XI ,XJ ,XK
]]

+
i

2
Ψ̄γiDiΨ −

i

4

[[

Ψ̄,XI ,XJ
]]

ΓIJΨ

)

+ Ltwisted Chern−Simons

(2.12)

where Ltwisted Chern−Simons is a parity invariant Chern-Simons action

Ltwisted Chern−Simons =
1

2
ǫijk

(

fabcdAi ab∂jAk cd +
2

3
fabclfdeg

lAi abAj deAk cg

)

. (2.13)

Indices i = 0, 1, 2 denote the three-dimensional directions and the covariant derivatives are

defined as

(DiΦ)a ≡ ∂iΦa − f cdb
a Ai cdΦb (2.14)

where Ai ab is the non-propagating three dimensional, two-index gauge field. For later use

it is useful to introduce another gauge field

Ã b
i a = f cdb

a Ai cd. (2.15)

The above action is invariant under the local gauge symmetry:

δgaugeΦa = f cdb
aΛcdΦb,

δgaugeAi cd = ∂iΛcd − fabe
[cΛd]eAi ab

(2.16)

as well as the global supersymmetry transformations

δsusyX
I = iǭΓIΨ

δsusyΨ = DiX
IΓIγiǫ −

1

6

[[

XI ,XJ ,XK
]]

ΓIJKǫ

δsusyÃ
ab
i = ifabcdǫγiΓIX

I
c Ψd

(2.17)

It has also been shown that [14] besides the 2 + 1 dimensional super-Poincaré symmetry

the above action, at least at classical level, is invariant under the full three-dimensional

superconformal algebra.

The equations of motion of the above action are

γiDiΨ +
1

2
ΓIJ

[[

XI ,XJ ,Ψ
]]

= 0

D2XI −
i

2
ΓIJ

[[

Ψ̄,XJ ,Ψ
]]

+
1

2

[[

XJ ,XK ,
[[

XI ,XJ ,XK
]]]]

= 0

F̃ ab
ij + ǫijkf

abcd

(

XJ
c DkXJ

d +
i

2
Ψ̄cγ

kΨd

)

= 0

(2.18)
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where

F̃ b
ij a = ∂iÃ

b
j a − ∂jÃ

b
i a − Ã b

i cÃ
c

j a + Ã b
j cÃ

c
i a .

In the BL theory, for both the Lorentzian and Euclidean realizations of the three-algebras,

the basis T a and hence all the components of the X field Xa are both taken to be Hermitian.

It is also worth noting that with this requirement and the Hermiticity property (2.6) the

potential terms in the Hamiltonian of the BL theory in both Lorentzian and Euclidean

cases are positive definite.

3. The relaxed three-algebras

The construction of BLG three-algebras with the definition and properties outlined in

section 2.1 has proven very restrictive. In this section we revisit the BL analysis with the

idea that we may be able to relax some of the conditions on the BL three-algebras while

keeping the physical outcomes intact. We will see this is indeed possible.

As discussed in section 2.1, three-algebras of interest are defined by five conditions:

a totally anti-symmetric three-bracket, existence of non-degenerate metric, the closure of

the three-algebra under the three-bracket, the fundamental identity and the trace prop-

erty (2.5). The antisymmetry, closure and fundamental identity are conveniently expressed

in terms of a basis T a and the structure constants fabc
d as in (2.7) and (2.9).

Let us relax the closure and fundamental identities, while keeping the antisymmetry

and the trace property, by enlarging the set of T a’s through the addition of extra generators

TA’s satisfying the properties:

i) TA is orthogonal to every other generator, i.e.

Tr(T aTA) = 0, T r(TATB) = 0 . (3.1)

ii) TA in the brackets:

[[

T a, T b, T c
]]

= fabc
dT

d + kabc
ATA, (3.2a)

[[

T a, T b, TA
]]

= fabA
BTB,

[[

T a, TA, TB
]]

= faAB
CTC ,

[[

TA, TB , TC
]]

= fABC
DTD,

(3.2b)

where fabc
d are still satisfying the standard fundamental identity (2.9) and any other

additional four-index structure constant, i.e. fxyz
A ∀ x, y, z, is yet unknown. Notice that

the form of
[[

T a, T b, TA
]]

,
[[

T a, TA, TB
]]

and
[[

TA, TB , TC
]]

is fixed by demanding the

consistency of these brackets with the “by-part” property (2.5).

If kabc
A are zero, we can just simply ignore the existence of the TA’s and we are back

to the BL three-algebra A3. However, with non-zero kabc
A, the algebra of T a’s does not

close. Nonetheless, we can still have a generalized or relaxed notion of closure. If we denote

the part of the algebra spanned by T a’s by K and the part spanned by TA’s by KS , (3.2)

can be rewritten as

[[

Φ1,Φ2,Φ3

]]

∈ K ⊕KS , ∀Φi ∈ K , (3.3a)
[[

Φ1,Φ2, χ
]]

,
[[

Φ, χ1, χ2

]]

,
[[

χ1, χ2, χ3

]]

∈ KS ∀ Φi ∈ K, χi ∈ KS . (3.3b)
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Therefore, with the above it is immediate to see that if we shift an element of K by an

arbitrary element in KS , the part of the resulting bracket which resides in K does not

change. In this sense (3.3) defines the notion of relaxed closure over K.

It will be convenient to introduce the notion of “physical” part of a given three-bracket.

Let Υi be a general element in K ⊕ KS . It can then be decomposed into its physical part

Φi (which is in K) and its spurious part χi (which is in KS). In other words,

(Υi)phys = Φi = habT
a Tr(T bΥi), ∀Υi ∈ K ⊕KS , (3.4)

where hab is the inverse of the metric hab = Tr(T aT b). It is also useful to note that

Tr(Φχ) = 0 , ∀Φ ∈ K, χ ∈ KS , (3.5)

and,
([[

Υ1,Υ2,Υ3

]])

phys
=

([[

Φ1,Φ2,Φ3

]])

phys
= fabc

d Φ1aΦ2bΦ3cT
d . (3.6)

In terms of the physical part of a bracket, the relaxed closure condition is nothing but the

closure for the physical part of the brackets.

In the same spirit as above one may define a notion of relaxed fundamental identity,

by demanding the fundamental identity (2.3) to hold for the physical part of the three

brackets. Explicitly,
[[[[

Υi,Υj,Υk

]]

phys
,Υl,Υm

]]

phys
+

[[[[

Υi,Υj,Υl

]]

phys
,Υm,Υk

]]

phys
+

[[[[

Υi,Υj ,Υm

]]

phys
,Υk,Υl

]]

phys
=

[[

Υi,Υj ,
[[

Υk,Υl,Υm

]]

phys

]]

phys
.

(3.7)

In terms of the structure constants f , this is equivalent to requiring fabc
d to satisfy (2.9).

With above notion of the relaxed closure and fundamental identity, together with the

orthogonality properties (3.1), we define a relaxed-three-algebra (RA3). Any given RA3

has a physical part K and an spurious part KS .

Let us now rewrite the BLG theory with the above relaxed-three-algebra by adding TA

components to the physical fields, i.e. we take the fields to be

Υ = ΦaT
a + χATA , (3.8)

and let the gauge fields to also have Ai aA components. With the trace conditions (3.1) it

is readily seen that the χA components of the fields do not appear in the action at all. This

is very similar to the notion of physical and spurious states in a 2d CFT e.g. see [23]. Since

the action does not involve the spurious fields the equations of motion for the physical

fields will not change compared to the ordinary BL case.

One can also check the supersymmetry and the gauge symmetry invariance of the

action within the relaxed-three-algebra. The only part which should be checked is where

the fundamental identity is used. As discussed in [2] the fundamental identity is needed

for the closure of supersymmetry when two successive supersymmetry transformations on

the gauge field is considered. One can, however, see that with the structure of the three-

brackets introduced in (3.2), the part in equation (35) of [2] does not harm the closure of the

supersymmetry algebra as long as fabc
d are still satisfying the fundamental identity (2.9).

In the next section we will give a construction based on usual matrices which realizes

this relaxed-three-algebras RA3.

– 7 –
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4. Matrix representation for the relaxed-three-algebras

There are many three-algebras, already among the ones having a bi-invariant metric with

Euclidean and Lorentzian signatures, and one may wonder whether by introducing some

additional structure in the theory reviewed above, one may get stronger constraints on the

classical Lie algebras underlying them. Inspired by the ideas of [12] regarding quantization

of Nambu three-brackets using four-brackets, we propose to realize the three-bracket in

terms of a four-bracket:
[[

A,B,C
]]

≡ [Â, B̂, Ĉ, T−] (4.1)

where the hatted quantities are just normal matrices, T− being among them (to be specified

shortly) and the four-bracket is defined as

[Â1, Â2, Â3, Â4] =
1

4!
ǫijklÂiÂjÂkÂl

=
1

4!

(

{[Â1, Â2], [Â3, Â4]} − {[Â1, Â3], [Â2, Â4]} + {[Â1, Â4], [Â2, Â3]}
)

.

(4.2)

The fundamental identity (2.3) in terms of the four-bracket takes the form1

[[A,B,C, T−],D,E, T−] + [C, [A,B,D, T−], E, T−]

+ [C,D, [A,B,E, T−], T−] = [A,B, [C,D,E, T−], T−].
(4.3)

It is straightforward to see that the above four-bracket defines a non-associative struc-

ture over the algebra of matrices and the Trace over the matrices is the natural trace op-

eration over this algebra.2 The Hermitian conjugation of the underlying algebra structure

naturally extends to the four-bracket. If T− is Hermitian it is immediate to see that (2.6)

holds. As we will show for one of the only two possibilities for T−, T− is Hermitian.

In the rest of this section we show that the above proposal (4.1), within the setup

of the relaxed-three-algebras of previous section, works for the two currently recognized

three-algebras, namely the so(4)-based algebras [15] and those coming with a Lorentzian

signature metrics of [16, 17, 19]. In fact, within our working assumptions described below,

these are the only two possible cases.

From the definition it is directly seen that the four-bracket has the anti-symmetry prop-

erty (2.2). Using the explicit definition (4.2) and standard matrix algebra, it is straight-

forward to see that the “by-part integration” property (2.5) is also satisfied. We are then

left with verifying the (relaxed) closure and fundamental identities.

1For the ease of notation, we will omit the hats Â on any matrix A. It should be clear from the bracket

under consideration the nature of the object under consideration.
2What we mean by lack of associativity of the four-bracket structure is what has also been called (lack

of) Leibniz rule (e.g see [11]):

[A, B, CD, T ] 6= [A, B,C, T ]D + C[A, B, D, T ] .

– 8 –
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4.1 The relaxed closure and fundamental identities

All the elements we consider belong to a finite dimensional matrix representation of an

underlying Lie-algebra G. G is an ordinary (classical) Lie-algebra defined through commu-

tator relations and ordinary structure constants. The three-bracket structure is, however,

defined over a subset of G. This subset has two parts: K with the basis T a, and KS with

the basis TA. K contains the “physical fields” and KS the “spurious fields” (cf. discussions

of section 3). We should emphasize that, although both K and KS are subsets of G they

are not necessarily sub-algebras of G.

The relaxed closure conditions (3.3) for three-algebras within our four-bracket structure

are then written as

[Φ1,Φ2,Φ3, T
−] ∈ K ⊕KS , ∀Φi ∈ K , (4.4a)

[Φ1,Φ2, χ, T−], [Φ1, χ1, χ2, T
−], [χ1, χ2, χ3, T

−] ∈ KS ∀Φi ∈ K, χi ∈ KS . (4.4b)

In fact we can view the above closure conditions as the definitions for the subsets K and

KS in G.

For the relaxed-three-algebras RA3 we demand a relaxed version of the fundamental

identity (3.7). Namely, we only demand the non-spurious part of the brackets in (4.4a) to

satisfy the fundamental identity.

Since T− has a distinct role in our four-bracket construction, we must specify it sep-

arately. From the closure conditions (4.4) and the definition of the four-bracket (4.2) it is

evident that T− is either in K or KS . To obtain a non-trivial interacting theory, T− cannot

be in KS . This can be seen by recalling the trace conditions (3.1) on the spurious parts.

Thus we take T− to be in K.

To proceed we will choose T− to be an element of K, such that its anti-commutator

with any element of K and KS is in the center of the underlying algebra G, as our working

assumptions. In terms of the basis T a and TA this means that either T− anticommutes

with T a and TA, or its anti-commutator with them is the identity matrix:

{T−, T a} = 0, or {T−, T a} = 11.

{T−, TA} = 0.
(4.5)

(Note that {T−, TA} = 11 case is not possible due to the trace condition (3.1).)

With the above choice it is evident that any linear combination of a given set of T a’s is

also satisfying the above anti-commutator conditions. Therefore, within the set of T a’s one

can identify a single element whose anti-commutator with T− is the identity matrix. We

will denote this element by T+. As T− ∈ K, T− should then square to zero or to (1/2)11.

Hence, given our working assumptions, there are two cases to consider for our four-bracket

realization of the three-bracket:

i) T− = T+, corresponding to 2(T−)2 = 11.

ii) (T−)2 = 0, corresponding to T+ 6= T− and {T+, T−} = 11.
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We will denote the elements in K by {T a} = {T+, T−, Tα}. Without loss of generality,

one can always choose the basis such that

{T±, Tα} = 0, {T+, T−} = 11 . (4.6)

Note that while {T+, TA} can be non-vanishing, it is always traceless (cf. (3.1)).

We will choose the Tα matrices to be hermitian,

(Tα)† = Tα , (4.7)

therefore, the metric

hαβ = Tr(TαT β),

is positive definite. Recalling (4.6),

h±α = Tr(T±Tα) = 0. (4.8)

Thus, the T− = T+ case corresponds to a positive definite metric hab since 2(T−)2 = 11,

and consequently h−− is positive. On the other hand, the T− 6= T+ case has Lorentzian

signature. This is because {T−, T+} = 11, and so h−+ = h+− is positive definite and

h−− = 0. Hence

dethab = − dethαβ · (h+−)2 < 0. (4.9)

One can always find a linear combination of T+ and T− for which both h−− and h++

vanish. Here we choose to work in such a basis.

Equipped with the above we are now ready to examine the relaxed closure condi-

tion (4.4) and the fundamental identity and check which algebras are satisfying the above

requirements.

4.1.1 The Euclidean signature case

For this case the only non-vanishing “physical” four-bracket is of the form [Tα, T β, T γ , T−]

which recalling (4.5) can be written as

[Tα, T β , T γ , T−] = FαβγT− , (4.10)

where Fαβγ is the totally anti-symmetric three-form

Fαβγ =
1

12

(

{Tα, [T β , T γ ]} + {T γ , [Tα, T β]} + {T β, [T γ , Tα]}
)

. (4.11)

Note that by definition Fαβγ is not necessarily in the algebra G, but in general in its

enveloping algebra.

The relaxed closure condition (4.4) demands FαβγT− ∈ K ⊕KS . Equivalently,

[Tα, T β, T γ , T−] = fαβγ
λT λ + gαβγT− + kαβγ

ATA (4.12)

where f, g and k are expansion coefficients, anti-symmetric in αβγ indices.

Multiplying both sides of (4.12) with T− and taking trace of both sides implies that

gαβγ = 0 and hence we only remain with fαβγ
λ and kαβγ

A terms.
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The relaxed fundamental identity (3.7) then requires:

fαβγ
σ fσρλ

δ + fαβρ
σ fγσλδ + fαβλ

σ fγρσ
δ = fγρλ

σ fαβσ
δ, (4.13)

Since hab is positive definite, it was proved in [15] that the unique solution to (4.13) is

given by

fαβγρ = ǫαβγρ (4.14)

and α, β, γ, ρ = 1, 2, 3, 4. The explicit solution for this case, as has been discussed in [12,

24] is

Tα = J α, T− = L5 (4.15)

where J α and L5 are in general 2J × 2J representation of so(4), which are generalization

of the ordinary SO(4) Dirac gamma matrices [24].3 For J = 2 they reduce to γα and γ5.

(For an explicit matrix form and more detailed discussion see [12, 24].) Note that the size

of the representation is not fixed by the above considerations.

The above explicit representation for Tα’s leads to kαβγ
A = 0 and hence for this case,

the Euclidean case, the RA3 is the same as the corresponding ordinary BL three-algebra.

In summary, our four-bracket representation for the three-algebra and its three-bracket

has all the needed properties of the three-bracket and the only solution to this case is the

SO(4)-based solutions discussed in [15].

Finally it is notable that in this case the algebra G which is the algebra generated

from J α and L5 (and their commutators) is so(6) ≃ su(4). Note, however, that the

J 5α = i[J α,L5] are not the TA’s, as they do not satisfy the trace condition (3.1) and (3.2b).

4.1.2 The Lorentzian signature case

There are two different non-vanishing four-brackets of “physical” elements to consider:

[Tα, T β , T γ , T−] = FαβγT− (4.16a)

[Tα, T β, T+, T−] =
1

4
[Tα, T β]T , (4.16b)

where Fαβγ is defined in (4.11) and

T ≡ [T+, T−]. (4.17)

In deriving these expressions, we have used the fact that, by definition, T commutes with

Tα ([T, Tα] = 0). Furthermore, from (T−)2 = 0 and {T+, T−} = 11, one has

T 2 = −(11 − 2T+T−)(11 − 2T−T+) = 11, (4.18a)

TT− = −(11 − 2T+T−)T− = −T− . (4.18b)

Let us analyze the (relaxed) closure conditions. First, requiring [Tα, T β, T γ , T−] ∈

K ⊕KS implies that in the most general form

FαβγT− = fαβγ
λT λ + gαβγT− + lαβγT+ + kαβγ

ATA (4.19)

3As mentioned in [15] direct sums of an arbitrary so(4) algebras also leads to fαβγρ = ǫαβγρ.
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where f , g, k and l are some unknown arbitrary expansion parameters which are totally

anti-symmetric under exchange of α, β and γ indices. Multiplying both sides of (4.19) in

T− and taking the trace, noting that the left-hand-side vanishes identically, we learn that

lαβγ = 0. Noting that (T−)2 = 0 and {T−, Fαβγ} = 0 then

{T−, FαβγT−} = 0, [T−, FαβγT−] = 0,

and therefore4

T−
(

fαβγ
λT λ + kαβγ

ATA
)

= 0. (4.20)

The second relaxed closure requirement, [Tα, T β, T+, T−] ∈ K ⊕KS implies,

[Tα, T β, T+, T−] =
1

4
fαβ

γT γ + lαβT− + gαβT+ + kαβ
ATA (4.21)

where fαβ
γ , lαβ, gαβ , kαβ

A are some unknown coefficients to be determined later. Taking

anti-commutator of both sides of (4.21) with T− we learn that coefficient of T+ is zero,

gαβ = 0. Multiplying both sides with T+ and taking the trace (recall (4.16)) the left hand

side vanishes and therefore lαβ = 0. Commutator of both sides of (4.21) with T , leads to

kαβ
A[T, TA] = 0. On the other hand if we multiply both sides of (4.21) with T− and then

its commutator with T+ we learn that kαβ
A(2TA + [T, TA]) = 0 and hence kαβ

ATA = 0.

Using the above and in particular [Tα, T β] = fαβ
γTT γ , that TT− = −T− and that

Tr(TαT−) = 0 one can show that trace of any number of Tα’s with T− is zero. This in

particular implies that fαβγ
λhλρ = 0. hαβ is non-degenerate and invertible therefore,

fαβγ
λ = 0 , (4.22)

and (4.20) reduces to kαβγ
ATAT− = 0 and moreover we have

{T+, FαβγT−} = −Fαβγ T = gαβγ 11 + kαβγ
A{T

+, TA} . (4.23)

After the above analysis in summary we remain with

[Tα, T β, T γ , T−] = FαβγT− = gαβγT− + kαβγ
ATA (4.24a)

[Tα, T β, T+, T−] =
1

4
[Tα, T β]T = fαβ

γT γ , (4.24b)

Furthermore, using (2.5) we learn that

fαβγ = fαβ
ρh

ργ = −
1

2
Tr(11)gαβγ . (4.25)

To complete our analysis and to determine the yet unknown coefficients kαβγ
A and

fαβ
γ we examine the relaxed fundamental identity. Let us first rewrite the identity for

generic generators T a:

[[T a, T b, T c, T−]phys, T
d, T e, T−]phys + [T c, [T a, T b, T d, T−]phys, T

e, T−]phys+

+ [T c, T d, [T a, T b, T e, T−]phys, T
−]phys = [T a, T b, [T c, T d, T e, T−]phys, T

−]phys,
(4.26)

4Here we will assume working with the non-trivial case of T αT− 6= 0.
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where T a = Tα, T− or T+. For three choices of the (abcde) indices the above fundamental

identity does not trivially hold, these cases are:

i) (abcde) = (αβγρ+) implying

fαβ
σgγρσ = fγρ

σgαβσ . (4.27)

ii) (abcde) = (α + γρλ) implying

fαγ
σgρλσ + fαρ

σgλγσ + fαλ
σgγρσ = 0. (4.28)

iii) (abcde) = (α + γρ+) implying

fαγ
σfρσ

λ + fρα
σfγσ

λ + fγρ
σfασ

λ = 0. (4.29)

Recalling (4.25) the only independent of the above equations is (4.29).

Noting (4.16b), (4.21) and that [T, Tα] = 0, it is seen that

[TTα, TT β] = fαβ
γTT γ, (4.30)

therefore, recalling (4.29), TTα’s are generators of a (classical) Lie-algebra which is a sub-

algebra of G, with the structure constants fαβ
γ . We will denote this sub-algebra by H.

Given any classical Lie algebra H, the only remaining parameter in our brackets is

kαβγ
A. As discussed

kαβγ
ATAT− = 0 , (4.31)

which can only be satisfied if either kαβγ
A or TAT− = 0. The first choice is not a pos-

sibility, because there is no classical Lie-algebra other than su(2) for which the totally

anti-symmetric three tensor

FαβγT =
1

12

(

{TTα, [TT β, TT γ ]} + {TT γ , [TTα, TT β]} + {TT β, [TT γ , TTα]}
)

,

is proportional to the identity.5 So, we are forced to choose the other possibility, i.e.

TAT− = 0 ⇒ TTA = −TAT = −TA. (4.32)

We may solve the above as

TA = T−T̃A = T̃AT− ⇐⇒ T̃A = {T+, TA} , (4.33)

where

[T±, T̃A] = [T, T̃A] = 0 . (4.34)

In terms of T̃A, (4.23) is written as

−Fαβγ T = gαβγ 11 + kαβγ
AT̃A . (4.35)

To elaborate on the spurious sector and in particular the algebra of the T̃A’s, we ex-

amine the relaxed closure condition for the brackets involving TA. As it is seen from (4.4b)

5We will return to the special case of H = su(2) later in this section.
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there are three such cases. For brackets of the form [T a, T b, TA, T−] when both a and b are

α-type the bracket vanishes and the only non-vanishing case is when (ba) = (+α). After

some algebra we find

12[Tα, TA, T+, T−] = [TTα, TA] = CαA
BTB , (4.36)

where the second equality is the statement of relaxed closure, with some unknown constants

C. From the above we also have

[TTα, T̃A] = CαA
BT̃B . (4.37)

Consistency of the above equation implies that

CαA
BCβB

D − CβA
BCαB

D = fαβ
γCγA

D . (4.38)

Since TATB = 0, brackets involving two and three TA’s identically vanish. Given the

above information we now proceed to construct the underlying algebra G.

The algebra I constructed from T, T + and T −. As discussed above (4.17), (4.18)

[T, T−] = −2T−, [T+, T−] = T, {T+, T−} = 11.

Thus, I will be identified once [T, T+] is known. It is straightforward to show

{[T, T+], T−} = 2 · 11, {[T, T+], Tα} = 0, [[T, T+], T−]] = 2T,

and hence [Tα, T β, [T, T+], T−] = 12[Tα, T β]T ∈ K. Therefore, [T, T+] is an element in K,

and since its anti-commutator with T− equals 2 · 11, we conclude

[T, T+] = +2T+. (4.39)

This is also consistent with all other properties quoted above. As a consequence, one can

show that (T+)2 = 0.

To sum up, T, T+ and T− form the following algebra

[T, T±] = ±2T±, [T+, T−] = T (4.40a)

{T+, T−} = 11 (T−)2 = 0. (4.40b)

Equations (4.40a) fix the algebra to be su(2) while (4.40b) fixes its representation to be

2 × 2 matrices. An explicit solution to the above equations is

T− = σ− =
1

2
(σ1 − iσ2), T = σ3, T+ = σ+ =

1

2
(σ1 + iσ2), (4.41)

where σi are the Pauli matrices. It is also noteworthy that (T+)† = T−, T † = T .
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Fixing the underlying algebra G. The algebra G is obtained by studying the closure

of the commutators between the generators of its I and H sub-algebras as well as the algebra

constructed from T̃A’s, which will be denoted by H̃. With the above considerations (the

commutator or) the algebra of T̃A’s will not be fixed. However, from (4.37) and (4.35) it

is seen that H̃ should contain H as a subalgebra. Moreover, in general H̃ may be taken as

the enveloping algebra of H, Env(H), or depending on H, some particular subalgebra of

Env(H).

To complete our analysis it will be useful to give an explicit representation for the

underlying algebra G. Based on what we have discussed any element in G, and in particular

Tα, T̃A, T± and T can be written as

T± = 11 ⊗ σ±, T = 11 ⊗ σ3

Tα = tα ⊗ σ3, T̃A = t̃A ⊗ σ3 ,
(4.42)

where tα and t̃A are respectively generators of H and H̃, that is

[tα, tβ ] = fαβ
γ tγ , [tα, t̃A] = CαA

B t̃B . (4.43)

As discussed neither of the algebras H and H̃ nor their representations are fixed.

However, as a general solution one may take H̃ = Env(H) (up to an Abelian u(1) factor)

in which case, if we choose to work with N × N representation of H the algebra H̃,

independently of H, will be su(N) and therefore G = su(2N) (see, however, the comment

below). A special case which is physically well-motivated is H = H̃. For this case H is

necessarily fixed to be su(N) in its fundamental N × N representation. In this case

gαβγ = −
1

N
fαβγ

where f are the structure constants of su(N).

Before closing this section, three comments are in order:

• For the very special case of H = su(2) and in its fundamental 2 × 2 representation,

it is readily seen that one can take kαβγ
A to be zero. In this case there is no need

to introduce the spurious sector KS . Nonetheless, for this case again the underlying

algebra G will be su(4).

• Although we usually consider H to be a simple Lie-algebra, it could also be a semi-

simple algebra. The particular and interesting example of this case is H = so(4).

(Note, however, that as discussed above this is not the Euclidean three-algebra.) In

this case, if we work with the 4 × 4 representation of so(4) algebra then we can take

H̃ = so(4) × u(1) × u(1) in which case the two u(1) factors are generated by γ5

and the 4 × 4 identity matrix. With this choice the consistency relation (4.38) is

obviously satisfied. The underlying algebra G in this case is 8 × 8 representation of

su(4) × su(4).

• As we have discussed the underlying algebra in both of the (T−)2 = 11/2 and (T−)2 =

0 cases can be (and indeed for the physically interesting ones is) an su(2N) algebra.
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The N = 2 case, related to the G = su(4), is very special because it is isomorphic

to so(6). In this sense it may seem that for the G = su(4) case there are two

different (Euclidean and Lorentzian) solutions. But, it turns out that both of these

solutions are indeed physically the same and they are related by a change of basis

T a’s: take H = su(2) and choose T+ − T− = 112 ⊗ iσ2 as iγ5 and the four T a’s (the

Dirac γ matrices) to be 2Tα = σα ⊗ σ3, α = 1, 2, 3 and T+ + T− = 112 ⊗ σ1. One

should, however, note that such a change of basis and taking the linear combination

of generators as new “T−” does not generally work because the fundamental identity

is not linear in T−. It is not difficult to show, using direct examination of the

fundamental identity, that it only works for H = su(2). As a related comment, we

note that in the (T−)2 = 11/2 case T− is hermitian and in the (T−)2 = 0 it is not. As

we have discussed the (T−)2 = 0 case does not have a solution with hermitian T−.

5. The alternative representation for the BL theory

After replacing the BL three-algebras with the relaxed-three-algebras RA3 and realizing

the relaxed-three-brackets with the four-brackets of usual matrices, we are now ready to

re-write the BL action in terms of usual matrices; the only thing we need to do is to replace

the three-brackets of the BL action with the four-bracket and recall the definition of the

trace. As discussed we take our gauge fields to have Ai ab and Ai aA components and define

the covariant derivative of any element Φ in K ⊕KS as

DiΦ = ∂iΦ − [T a, T b,Φ, T−]Ai ab − [T a, TA,Φ, T−]Ai aA . (5.1)

As shown the spurious parts of the field Φ as well as its covariant derivative do not appear

in the action (as they drop out once we take the trace). Therefore, we can define a “physical

gauge” in which ΦA = 0 and AiaA components are chosen such that6

DiΦ = (DiΦ)phys = ∂iΦphys −Ai ab[T
a, T b,Φ, T−]phys =

(

∂iΦd − fabc
dAi abΦc

)

T d . (5.2)

Equivalently, the “physical gauge” is the one in which Φ, DiΦ ∈ K. As discussed

in the Lorentzian case, when we choose TTα to be Hermitian matrices, then TA’s are

not Hermitian. Therefore in the physical gauge, when TA components are absent we can

demand Hermiticity

Φ† = Φ , (DiΦ)† = DiΦ , (5.3)

where Φ are generic scalar fields of the theory. In fact we will be requiring the above

conditions which also implies working with non-spurious parts of fields. Hereafter we will

always be working in the above mentioned physical gauge (5.3) and unless it is necessary

this point will not be mentioned explicitly. Therefore, in the physical gauge the Ai aA

components do not appear and we only remain with Ai ab components of the gauge field.

6Note that due to the possibility of the presence of Ai aA components we have an extended notion of

gauge symmetry which allows for choosing these components of the gauge fields. Since these components

do not appear in the Chern-Simons part of the action, this gauge symmetry is of course a trivial symmetry

of the corresponding BL action.
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Next we focus on the Ai ab components. In general, Aab can have A−α and Aαβ com-

ponents for the so(4)-based algebra and A±∓, A±α and Aαβ components for the Lorentzian

algebras. However, as it is seen from the explicit form of the covariant derivative (5.1) and

also the form of the twisted Chern-Simons action (2.13), not all of the possible components

of the gauge field appear in the action. For the so(4) based algebra it is only the αβ

component [1, 2], and for the Lorentzian case they are the +α and αβ components [17, 16].

With the above definition, hence the other components, i.e. A−α for the so(4)-based case

and A±∓ and A−α for the Lorentzian case, are “gauge degrees of freedom” and may be

chosen freely and for example can be set to zero. It is also seen that the T− component of

the Φ ∈ K, for both the Euclidean and Lorentzian cases, is also a free field not interacting

with the other components.

5.1 Lagrangian in terms of Four-brackets

From the discussions of previous section and our construction of three-brackets and the

relaxed-three-algebras it is evident that if in the action (2.12) we replace three-brackets

with our prescribed four-brackets we will obtain a supersymmetric and gauge invariant

action. For both cases, Euclidean and Lorentzian, the supersymmetry transformations and

Lagrangian are alike. For completeness we only show the explicit form of the action, its

equations of motion and supersymmetry and gauge transformations.

The action.

S =

∫

d3σ Tr

[

−
1

2
DiX

IDiXI −
1

2.3!
[XI ,XJ ,XK , T−][XI ,XJ ,XK , T−]

+
i

2
Ψ̄γiDiΨ −

i

4
[Ψ̄,XI ,XJ , T−]ΓIJΨ

+
1

2
ǫijk

(

Ai ab∂jAk cdT
d +

2

3
Ai abAj deAk cf [T d, T e, T f , T−]

)

[T a, T b, T c, T−]

]

.

(5.4)

Equations of motion.
(

γiDiΨ +
1

2
ΓIJ [XI ,XJ ,Ψ, T−]

)

phys

= 0

(

D2XI −
i

2
ΓIJ [Ψ̄,XJ ,Ψ, T−] +

1

2
[XI ,XJ , [XI ,XJ ,XK , T−], T−]

)

phys

= 0

(

F̃ ab
ij + ǫijk

(

DkXI [T a, T b,XI , T−] −
i

2
Ψ̄γk[T a, T b,Ψ, T−]

)

)

phys

= 0

(5.5)

where F̃ is appeared in (2.18).

Supersymmetry transformations.

δXI = iǭΓIΨ

δΨ = DiX
IΓIγiǫ −

1

6
[XI ,XJ ,XK , T−]ΓIJKǫ

δ(DiΦ) − Di(δΦ) = iǭγiΓI [XI ,Ψ,Φ, T−], ∀Φ

(5.6)
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where it is understood that we are only considering the physical parts of the fields. It

is immediate to see that the action is invariant when we also include non-physical and

spurious parts in the above supersymmetry transformations. Nonetheless, along the line

of arguments of [2] on can show that the supersymmetry algebra (i.e. commutator of two

successive supersymmetry transformations) does not close to a translation, up to gauge

transformations.

Gauge transformations. We should emphasize that the following “gauge transforma-

tions” are the gauge symmetry remaining after fixing the physical gauge (5.2) and (5.3).

The Euclidean case

δΦa = ǫcdb
aΛcdΦb , δΦ− = 0

δAi ab = ∂iΛab − ǫdec
[aΛb]cAi de, a, b, c, d = 1, 2, 3, 4 .

(5.7)

The Lorentzian case

δΦα = fβγ
α(2Λ+βΦγ + ΛβγΦ+)

δΦ+ = fαβγΛαβΦγ

δΦ− = 0

(5.8)

δAi +α = ∂iΛ+α + 2fβγ
αΛ+γAi +β

δAi αβ = ∂iΛαβ − 2fργ
[α Λβ]γ Ai +ρ − fργ

[αΛβ]+ Ai ργ

(5.9)

In the Lorentzian case the Greek indices are ranging from 1, · · · , dimH and correspond to

H indices.

5.2 On the physical interpretation of the Lorentzian case

As has been discussed in the literature the so(4)-based theories describe (the low energy

limit of) two M2-branes on an orbifold [25, 26]. The physical interpretation of the Loren-

ztian case, however, is less clear. In the usual treatment all the components of the scalars

XI , including X+ and X− are taken to be real and hence the negative signature in the

metric hab means that one combination of X+ and X− has negative eigenvalue, in other

words, we have ghosts. Existence of ghosts which couple to the other fields endangers the

unitarity of the theory. Our treatment of the three-algebras, however, sheds light on the

unitarity or ghost problem of the Lorentzian case.

As shown in section 3, the negative eigenvalue of the metric is indeed a reflection of

the way we realize the three-brackets and the way T± are embedded in the underlying G

algebra. Therefore, in contrast to the usual treatment in our description, while the scalar

field XI = XI
aT

a is still Hermitian X+ and X− are not, explicitly

(XI)† = XI ⇒ (XI
+)∗ = XI

− . (5.10)

With the above it is immediate to see that we do not have the negative kinetic term, or ghost

problem. Nonetheless, the unitarity problem shows up in some other place: the interaction

terms in the Hamiltonian only involve XI
+ (and not XI

−) and hence the Hamiltonian in our

description is not Hermitian.
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To resolve the problem we recall the gauge symmetry of our Lagrangian and the fact

that XI
+ components are not gauge invariant (5.8) and hence are not directly physical

observables. This opens up the possibility that this non-Hermiticity can be an artifact of

the gauge symmetry and the physical theory is indeed Hermitian and unitary. In what

follows we argue that there is a gauge, the Hermitian gauge, in which the Hamiltonian is

explicitly Hermitian, resolving the problem with unitarity.

5.2.1 The Hermitian gauge

As is seen from (5.8) the gauge transformations are parameterized through two sets of

gauge parameters Λ+α and Λαβ , each having dimH number of parameters. Moreover, XI
+

only transforms under the Λαβ-type gauge transformations while is invariant under the

Λ+α-type transformations.

On the other hand, the Hamiltonian becomes Hermitian only if XI
+ and XI

− are equal

up to a sign, that is when XI
+ is real or pure imaginary. Therefore, if we fix the Λαβ-gauge

such that

XI
+ = ±XI

−,

the Hamiltonian becomes Hermitian. To fix the sign choice in the above gauge fixing

expression we choose the gauge such that the positivity of the Hamiltonian (the potential)

is ensured. It is straightforward to check that this is fulfilled with the negative sign. The

appropriate Hermitian-gauge fixing condition is then7

XI
+ + XI

− = 0 . (5.11)

One should note that the above gauge fixing condition only partially fixes the Λαβ gauge

symmetry.8 Besides the Hermiticity problem of the Hamiltonian, the above gauge also

removes half of the degrees of freedom in XI
±. Hereafter, we will work in the Hermitian

gauge and define

Y I ≡ −
i

2
(XI

+ − XI
−) = −iXI

+ . (5.12)

After fixing the Λαβ-type gauge transformations, we only remain with Λ+α. For this

restricted gauge symmetry the gauge transformations are

δΦα = 2fβγ
αΛ+βΦγ

δAi +α = ∂iΛ+α + 2fβγ
αΛ+γ Ai +β

δAi αβ = −fργ
[αΛβ]+ Ai ργ .

(5.13)

7To fix the gauge condition (5.11) we in fact need at least eight gauge parameters. Therefore, our

arguments works for dimH ≥ 8. As will become clear in the next subsection the appropriate H for N

M2-branes is su(N), this corresponds to N ≥ 3. For the special case of N = 2, which as discussed in

the end of section 4 is equivalent to the so(4)-based algebras with an appropriate change of basis, one

can explicitly show that in this specific gauge the two Lorenztian and Euclidean descriptions are indeed

identical, of course once an su(2) part of the so(4) gauge symmetry of the latter case is also fixed.
8Noting the comments in footnote 5, only for N = 3 these gauge transformations can be completely

fixed by (5.11).
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After the following renaming

Λ̂α =
1

2
Λ+α , Âi α =

1

2
Ai +α , B̂i γ = fαβ

γAi αβ , (5.14)

the above gauge transformations take the familiar form of standard gauge transformations

for the algebra H with Âi as the gauge field and the two “matter fields” Φα and B̂i α in

the adjoint (and anti-adjoint) representations:

δΦ = [Λ̂,Φ] ,

δB̂i = −[Λ̂, B̂i] ,

δÂi = D̂iΛ̂ = ∂iΛ̂ − [Λ̂, Ai]

(5.15)

where

([Λ̂,Φ])α = fβγ
αΛ̂βΦγ .

It is evident that Y I are singlets and does not transform under the above gauge trans-

formations of the H algebra. As we see after fixing the Hermitian gauge the proposed

D = 3, N = 8 action (5.4) written in terms of hatted fields and Y I (5.12) exhibits a

standard H invariance (with the gauge transformations (5.15)).

5.3 Connection to multi M2-brane theory, the parity invariance

The proposed BL D = 3, N = 8 theory is expected to be related to theory of multiple

M2-branes in an eleven dimensional flat space background. As such, one then expects that

this theory should have the same form for a system of M2-branes and anti-M2 branes.

From the worldvolume theory viewpoint M2-branes and anti M2-branes are related by the

worldvolume parity and hence the proposed BL theory should be parity invariant [14, 17,

27]. In terms of our four-bracket and the algebra G, the parity invariance is respected if

the parity is defined as

σ0, σ1 → σ0, σ1, σ2 → −σ2, T± → −T±, Tα → Tα, (5.16)

(σ0, σ1 and σ2 are M2-brane worldvolume coordinates) while XI behave as scalars under

parity, Ψ as a 3d fermion, and Aµ as a 3d vector. That is, under parity

XI
α → XI

α , XI
± → −XI

± ,

(A0, A1, A2) αβ → (A0, A1,−A2) αβ , (A0, A1, A2) +α → (−A0,−A1, A2) +α .
(5.17)

As we see the parity (5.16) is an automorphism on the algebra G as well as its subset K

over which the four-bracket closes (in the relaxed closure sense). More precisely, under the

above parity the H ∈ G is invariant, while on the su(2) ∈ G it acts as an automorphism.

It is also immediate to check that with (5.17) the action (5.4) is parity invariant. More-

over, the Hermitian gauge (5.11) is preserved under parity. This is a necessary condition

to have a consistent (Hermitian) multi M2-brane theory.

So far, for the Lorentzian case we have not identified the algebra H and the underlying

algebra G. In the next section we will argue that the choice H = su(N), G = su(2N)

corresponds to the low energy limit of N M2-branes.
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5.4 Analysis of 1/2 BPS states

To relate the above “gauge fixed relaxed BLG model” to the theory of multiple M2-branes,

we need to specify the algebra H and relate that to the number of M2-branes N . This

can be done by studying the half BPS configurations of the model, the moduli space of

which should be identified with the moduli space of N membranes in eleven dimensional

flat background, which is R
8N/SN .

The half BPS sector is the one for which the right-hand-side of supersymmetry trans-

formations (5.6) vanishes for any arbitrary supersymmetry transformation parameter ǫ. In

order δXI and δAiab to vanish we need to turn off the fermionic field Ψ. We are then left

with the fermionic transformation which has two terms. These terms come with different

matrix structure in so(2, 1) and so(8) gamma-matrices. Therefore, for δΨ to vanish for any

ǫ each term should vanish independently, i.e.

DiX
I = 0 , (5.18a)

[XI ,XJ ,XK , T−]phys = 0. (5.18b)

Recalling the equations of motion (5.5), demanding vanishing of (5.18a), the field strength

of the gauge field vanishes and one can always work in a gauge in which Ai = 0, and

hence (5.5) implies that ∂iX
I = 0 In other words 1/2 BPS membranes must be flat mem-

branes with worldvolume R
2,1. We are then left with (5.18b) which recalling the definition

of the four-bracket, is satisfied if and only if

[XI ,XJ ] = 0 . (5.19)

Note that since we are working in the “physical Hermitian gauge” XI in the above equation

have components only along the Tα directions. Therefore, (5.19) is only satisfied when

XI are in Cartan subalgebra of H and that the number of such possible XI matrices is

rank(H)−1. (Note that we have already taken out the “center of mass” degree of freedom

in XI
+.) Noting that XI are basically related to the position of M2-branes, this means that

number of M2-branes N minus one is to be taken as rank of H.

As discussed in [16, 17] (see also [18]) another test for the theory of multi M2-branes is

that upon “compactification” it should reproduce theory of multi D2-branes. This together

with the above discussions fixes H = H̃ = su(N) in its fundamental N ×N representation

as the theory of N membranes and hence the underlying algebra G = su(2N). With this

choice it is evident that the moduli space of solutions to (5.19) is the desired R8N/SN .

Let us discuss some low-lying N ’s in more detail. The N = 1 corresponds to a single

M2-brane. In this case the fields are 2×2 matrices and therefore all the four-brackets vanish.

In this case, as expected, we are dealing with a non-interacting free theory and the only

remaining degree of freedom are Y I (and their fermionic counterparts). This is suggesting

that Y I should correspond to the center of mass degree of freedom in the N > 1 cases.9

9It is worth noting that under parity Y I → −Y I and hence the parity transformation we have introduced

here besides changing an M2-brane to an anti M2, also acts as a parity on the target space directions trans-

verse to the brane. In the static gauge for the M2-brane, this means that under our parity we are essentially
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The next case is N = 2 corresponding to two M2-brane system which has XI
α fields in

the adjoint of su(2) plus the Y I ’s which are su(2) singlets. Here we are dealing with 4× 4

representation of su(4). As discussed this case also makes connection with the so(4)-based

algebras which have also been discussed to correspond to the two M2-brane dynamics. To

argue for the claim that Y I are the center of mass coordinates one should show that they

decouple from the dynamics. The first steps toward this end has been taken in [20, 21],

further arguments in support of this is postponed to future works [28]. Once this claim is

established for N = 2, the same argument can then be generalized to a generic N .

6. Discussion and outlook

Superconformal field theories in three dimensions are clearly of interest, and it is important

to understand the necessary requirements underlying their construction. Given the success

of the notion of 3-algebras to achieve this, in this paper we have focused in finding finite

dimensional matrix representations for these 3-algebras and analysed whether the satisfac-

tion of the so called fundamental identity and closure of the 3-algebra could be relaxed in

any way while preserving the main physical features of these theories.

Concerning the first point above, we explored the idea that the non-associative three-

algebras and their representations can be expressed in terms of inherently associative clas-

sical Lie-algebras (and their matrix representations), by introducing the “non-associative

bracket structure” on these algebras; we denoted this underlying associative matrix alge-

bra by G. We argued that to keep the essential properties of the non-associative three-

brackets, when expressed in terms of matrices, we need to replace the three-bracket with a

four-bracket which is defined as the totally anti-symmetric product of matrices appearing

in the bracket. In this procedure, we then need to introduce a given extra matrix, which

was called T−, when moving from a three-bracket to a four-bracket. (T− is of course an

element in G.)

With the working assumption that T− should anti-commute with all the elements of the

“three-algebra”, we examined the necessary closure and fundamental identity. As argued,

however, one can still have the notion of physically interesting three-algebras if we relax

both the fundamental identity and closure conditions in a very particular way. This was

done by demanding the closure of the brackets up to the spurious parts of the elements of

the algebra. In other words, any element has a physical as well as a spurious part and only

bracket of physical parts of the elements lead to a physical element, and the physical part of

brackets satisfy the fundamental identity. With this extended, generalized or relaxed notion

of fundamental identity and the closure we hence defined the relaxed-three-algebras RA3.

As we showed the above definition of relaxed-three-algebras is still restrictive enough

to fix the possible underlying algebra G and its representations. We showed that within

our working assumptions only two cases are possible, one corresponding to the case with

positive definite metric on the relaxed-three-algebra, the Euclidean case, and the other

changing sign on nine space coordinates of the eleven dimensional background. This transformation is also

a symmetry of the eleven dimensional supergravity and expected to be symmetry of the M2-brane theory

too.
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with a Lorentzian metric on that algebra. We should emphasize that in our analysis we

did not assume anything about the signature of the metric and this condition appeared

as the consistency condition within our setting. Moreover, as discussed there is nothing

inherently Lorentzian in the underlying algebra G and the Lorentzian signature is as an

artifact of the choice of the set of generators of G which appear in the four-brackets. This

is the resolution to the problem of the negative kinetic energy states (ghosts) in the usual

treatment of the Lorentzian BL theory [20 – 22]. For the Euclidean case, using the results

of [15], we concluded that there is only one possibility which was called the “so(4)-based”

algebras for which the underlying algebra is su(4). For the Lorenzian case, however, we

showed that there remains a freedom in choosing the algebra which was then fixed once the

setting of relaxed-three-algebras was employed in the multi M2-brane theory. As argued

the Euclidean case can be formulated without the spurious parts for elements, whereas

spurious parts are necessary for the Lorentzian case.

In the corresponding physical model the spurious parts of the fields do not appear

at all and the Hilbert space of physical states is hence defined by modding out the total

Hilbert space by the spurious parts. As discussed in the specific physical model of multi

M2-branes the spurious parts are reminiscent of usually overlooked gauge symmetries. This

spurious parts are very similar to the same concept in the context of 2d CFT ’s and in string

theory [23]. Exploring and understanding these symmetries seems to be an important clue

to better understanding of, and resolution to, one of the fundamental open issues in the

Bagger-Lambert multi M2-brane theory for more than two M2-branes.

Analyzing the moduli space of 1/2 BPS states of the new realization of the BL-theory

in terms of four-brackets, we argued that in order this moduli space to be the same as what

is expected from N M2-branes in flat 11 dimensional background, the underlying algebra

G must be taken su(2N) and the physical fields and states must be labeled by physical

N × N representation of su(N).

Our matrix realisation should hopefully not just be thought of another algebraic con-

struction, but as an attempt to achieve a more intuitive physical picture for the effective

field theory governing coincident M2-branes. In this respect, we would like to clarify the

role played by our su(2N) underlying algebra and the su(N) H algebra in an analogous

way to what we have for multiple (coincident) D-branes, where the degrees of freedom

corresponding to open string attached to and stretched between parallel D-branes leads to

the su(N) structure [29]. Note that to get the su(N) structure we should remember that

open strings stretched between D-branes come in two opposite orientations each of which

includes a massless (vector) state when two D-branes become coincident. For the case of

M2-branes, similar to the D-brane case, we have open M2-branes stretched between two

M2-branes. Although we do not know the spectrum of open M2-branes as well as we want

to, it is expected that there are massless states in the coincident M2-brane limit. Again

similarly to the stretched open string case, there are open M2 and anti-M2 branes. Recall-

ing that M2-branes are two dimensional (to be compared with one dimensional strings),

for the case of membranes there are two options to get an anti-M2 brane for a given M2;

the M2-brane and anti-M2-brane are related by parity on the worldvolume of the brane.

This is suggestive that when we consider the four possible open M2 and anti-M2 branes
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(two M2-brane in which orientation on both directions have changed with respect to each

other and two respective anti-M2-branes which are related by worldvolume parity to the

two M2-brane cases) we are over-counting the degrees of freedom and this should be mod

out by the worldvolume parity. In other words, the reduction from su(2N) to su(N) which

labels N M2-brane fluctuations could be done through worldvolume parity. As argued the

parity on the M2-brane worldvolume is acting as an automorphism of this su(2N) alge-

bra and keeps the su(N) labels of the physical states/fields invariant. It would be very

interesting to make the above picture more precise and concrete [28].

As discussed the ghost problem of the Lorentzian three-algebras in our setup manifested

itself in our setup as non-hermiticty of the Hamiltonian before the gauge fixing and can be

removed once we fix the Hermitian gauge. This resolution which is in accord with proposal

in [20, 21], however, requires identifying the mode, which we called Y I as the center of

mass degree of freedom of M2-brane system. The problem which is still remaining in this

direction is establishing the fact that the center of mass degree of freedom is indeed decou-

pled. Once this problem is settled, our setup which is based on usual matrices provides the

needed tools to make further analysis of the D = 3, N = 8 or the multi-M2-brane theory.
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